Files
crossdesk/thirdparty/nvcodec/Samples/Utils/NvCodecUtils.h
2023-08-30 17:44:22 +08:00

491 lines
14 KiB
C++

/*
* Copyright 2017-2020 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
//---------------------------------------------------------------------------
//! \file NvCodecUtils.h
//! \brief Miscellaneous classes and error checking functions.
//!
//! Used by Transcode/Encode samples apps for reading input files,
//! mutithreading, performance measurement or colorspace conversion while
//! decoding.
//---------------------------------------------------------------------------
#pragma once
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <sys/stat.h>
#include <chrono>
#include <condition_variable>
#include <fstream>
#include <iomanip>
#include <ios>
#include <list>
#include <sstream>
#include <thread>
#ifdef __cuda_cuda_h__
inline bool check(CUresult e, int iLine, const char *szFile) {
if (e != CUDA_SUCCESS) {
const char *szErrName = NULL;
cuGetErrorName(e, &szErrName);
return false;
}
return true;
}
#endif
#ifdef __CUDA_RUNTIME_H__
inline bool check(cudaError_t e, int iLine, const char *szFile) {
if (e != cudaSuccess) {
return false;
}
return true;
}
#endif
#ifdef _NV_ENCODEAPI_H_
inline bool check(NVENCSTATUS e, int iLine, const char *szFile) {
const char *aszErrName[] = {
"NV_ENC_SUCCESS",
"NV_ENC_ERR_NO_ENCODE_DEVICE",
"NV_ENC_ERR_UNSUPPORTED_DEVICE",
"NV_ENC_ERR_INVALID_ENCODERDEVICE",
"NV_ENC_ERR_INVALID_DEVICE",
"NV_ENC_ERR_DEVICE_NOT_EXIST",
"NV_ENC_ERR_INVALID_PTR",
"NV_ENC_ERR_INVALID_EVENT",
"NV_ENC_ERR_INVALID_PARAM",
"NV_ENC_ERR_INVALID_CALL",
"NV_ENC_ERR_OUT_OF_MEMORY",
"NV_ENC_ERR_ENCODER_NOT_INITIALIZED",
"NV_ENC_ERR_UNSUPPORTED_PARAM",
"NV_ENC_ERR_LOCK_BUSY",
"NV_ENC_ERR_NOT_ENOUGH_BUFFER",
"NV_ENC_ERR_INVALID_VERSION",
"NV_ENC_ERR_MAP_FAILED",
"NV_ENC_ERR_NEED_MORE_INPUT",
"NV_ENC_ERR_ENCODER_BUSY",
"NV_ENC_ERR_EVENT_NOT_REGISTERD",
"NV_ENC_ERR_GENERIC",
"NV_ENC_ERR_INCOMPATIBLE_CLIENT_KEY",
"NV_ENC_ERR_UNIMPLEMENTED",
"NV_ENC_ERR_RESOURCE_REGISTER_FAILED",
"NV_ENC_ERR_RESOURCE_NOT_REGISTERED",
"NV_ENC_ERR_RESOURCE_NOT_MAPPED",
};
if (e != NV_ENC_SUCCESS) {
return false;
}
return true;
}
#endif
#ifdef _WINERROR_
inline bool check(HRESULT e, int iLine, const char *szFile) {
if (e != S_OK) {
std::stringstream stream;
stream << std::hex << std::uppercase << e;
return false;
}
return true;
}
#endif
#if defined(__gl_h_) || defined(__GL_H__)
inline bool check(GLenum e, int iLine, const char *szFile) {
if (e != 0) {
return false;
}
return true;
}
#endif
inline bool check(int e, int iLine, const char *szFile) {
if (e < 0) {
return false;
}
return true;
}
#define ck(call) check(call, __LINE__, __FILE__)
/**
* @brief Wrapper class around std::thread
*/
class NvThread {
public:
NvThread() = default;
NvThread(const NvThread &) = delete;
NvThread &operator=(const NvThread &other) = delete;
NvThread(std::thread &&thread) : t(std::move(thread)) {}
NvThread(NvThread &&thread) : t(std::move(thread.t)) {}
NvThread &operator=(NvThread &&other) {
t = std::move(other.t);
return *this;
}
~NvThread() { join(); }
void join() {
if (t.joinable()) {
t.join();
}
}
private:
std::thread t;
};
#ifndef _WIN32
#define _stricmp strcasecmp
#define _stat64 stat64
#endif
/**
* @brief Utility class to allocate buffer memory. Helps avoid I/O during the
* encode/decode loop in case of performance tests.
*/
class BufferedFileReader {
public:
/**
* @brief Constructor function to allocate appropriate memory and copy file
* contents into it
*/
BufferedFileReader(const char *szFileName, bool bPartial = false) {
struct _stat64 st;
if (_stat64(szFileName, &st) != 0) {
return;
}
nSize = st.st_size;
while (nSize) {
try {
pBuf = new uint8_t[(size_t)nSize];
if (nSize != st.st_size) {
}
break;
} catch (std::bad_alloc) {
if (!bPartial) {
return;
}
nSize = (uint32_t)(nSize * 0.9);
}
}
std::ifstream fpIn(szFileName, std::ifstream::in | std::ifstream::binary);
if (!fpIn) {
return;
}
std::streamsize nRead =
fpIn.read(reinterpret_cast<char *>(pBuf), nSize).gcount();
fpIn.close();
assert(nRead == nSize);
}
~BufferedFileReader() {
if (pBuf) {
delete[] pBuf;
}
}
bool GetBuffer(uint8_t **ppBuf, uint64_t *pnSize) {
if (!pBuf) {
return false;
}
*ppBuf = pBuf;
*pnSize = nSize;
return true;
}
private:
uint8_t *pBuf = NULL;
uint64_t nSize = 0;
};
/**
* @brief Template class to facilitate color space conversion
*/
template <typename T>
class YuvConverter {
public:
YuvConverter(int nWidth, int nHeight) : nWidth(nWidth), nHeight(nHeight) {
pQuad = new T[((nWidth + 1) / 2) * ((nHeight + 1) / 2)];
}
~YuvConverter() { delete[] pQuad; }
void PlanarToUVInterleaved(T *pFrame, int nPitch = 0) {
if (nPitch == 0) {
nPitch = nWidth;
}
// sizes of source surface plane
int nSizePlaneY = nPitch * nHeight;
int nSizePlaneU = ((nPitch + 1) / 2) * ((nHeight + 1) / 2);
int nSizePlaneV = nSizePlaneU;
T *puv = pFrame + nSizePlaneY;
if (nPitch == nWidth) {
memcpy(pQuad, puv, nSizePlaneU * sizeof(T));
} else {
for (int i = 0; i < (nHeight + 1) / 2; i++) {
memcpy(pQuad + ((nWidth + 1) / 2) * i, puv + ((nPitch + 1) / 2) * i,
((nWidth + 1) / 2) * sizeof(T));
}
}
T *pv = puv + nSizePlaneU;
for (int y = 0; y < (nHeight + 1) / 2; y++) {
for (int x = 0; x < (nWidth + 1) / 2; x++) {
puv[y * nPitch + x * 2] = pQuad[y * ((nWidth + 1) / 2) + x];
puv[y * nPitch + x * 2 + 1] = pv[y * ((nPitch + 1) / 2) + x];
}
}
}
void UVInterleavedToPlanar(T *pFrame, int nPitch = 0) {
if (nPitch == 0) {
nPitch = nWidth;
}
// sizes of source surface plane
int nSizePlaneY = nPitch * nHeight;
int nSizePlaneU = ((nPitch + 1) / 2) * ((nHeight + 1) / 2);
int nSizePlaneV = nSizePlaneU;
T *puv = pFrame + nSizePlaneY, *pu = puv, *pv = puv + nSizePlaneU;
// split chroma from interleave to planar
for (int y = 0; y < (nHeight + 1) / 2; y++) {
for (int x = 0; x < (nWidth + 1) / 2; x++) {
pu[y * ((nPitch + 1) / 2) + x] = puv[y * nPitch + x * 2];
pQuad[y * ((nWidth + 1) / 2) + x] = puv[y * nPitch + x * 2 + 1];
}
}
if (nPitch == nWidth) {
memcpy(pv, pQuad, nSizePlaneV * sizeof(T));
} else {
for (int i = 0; i < (nHeight + 1) / 2; i++) {
memcpy(pv + ((nPitch + 1) / 2) * i, pQuad + ((nWidth + 1) / 2) * i,
((nWidth + 1) / 2) * sizeof(T));
}
}
}
private:
T *pQuad;
int nWidth, nHeight;
};
/**
* @brief Utility class to measure elapsed time in seconds between the block of
* executed code
*/
class StopWatch {
public:
void Start() { t0 = std::chrono::high_resolution_clock::now(); }
double Stop() {
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch() -
t0.time_since_epoch())
.count() /
1.0e9;
}
private:
std::chrono::high_resolution_clock::time_point t0;
};
template <typename T>
class ConcurrentQueue {
public:
ConcurrentQueue() {}
ConcurrentQueue(size_t size) : maxSize(size) {}
ConcurrentQueue(const ConcurrentQueue &) = delete;
ConcurrentQueue &operator=(const ConcurrentQueue &) = delete;
void setSize(size_t s) { maxSize = s; }
void push_back(const T &value) {
// Do not use a std::lock_guard here. We will need to explicitly
// unlock before notify_one as the other waiting thread will
// automatically try to acquire mutex once it wakes up
// (which will happen on notify_one)
std::unique_lock<std::mutex> lock(m_mutex);
auto wasEmpty = m_List.empty();
while (full()) {
m_cond.wait(lock);
}
m_List.push_back(value);
if (wasEmpty && !m_List.empty()) {
lock.unlock();
m_cond.notify_one();
}
}
T pop_front() {
std::unique_lock<std::mutex> lock(m_mutex);
while (m_List.empty()) {
m_cond.wait(lock);
}
auto wasFull = full();
T data = std::move(m_List.front());
m_List.pop_front();
if (wasFull && !full()) {
lock.unlock();
m_cond.notify_one();
}
return data;
}
T front() {
std::unique_lock<std::mutex> lock(m_mutex);
while (m_List.empty()) {
m_cond.wait(lock);
}
return m_List.front();
}
size_t size() {
std::unique_lock<std::mutex> lock(m_mutex);
return m_List.size();
}
bool empty() {
std::unique_lock<std::mutex> lock(m_mutex);
return m_List.empty();
}
void clear() {
std::unique_lock<std::mutex> lock(m_mutex);
m_List.clear();
}
private:
bool full() {
if (m_List.size() == maxSize) return true;
return false;
}
private:
std::list<T> m_List;
std::mutex m_mutex;
std::condition_variable m_cond;
size_t maxSize;
};
inline void CheckInputFile(const char *szInFilePath) {
std::ifstream fpIn(szInFilePath, std::ios::in | std::ios::binary);
if (fpIn.fail()) {
std::ostringstream err;
err << "Unable to open input file: " << szInFilePath << std::endl;
throw std::invalid_argument(err.str());
}
}
inline void ValidateResolution(int nWidth, int nHeight) {
if (nWidth <= 0 || nHeight <= 0) {
std::ostringstream err;
err << "Please specify positive non zero resolution as -s WxH. Current "
"resolution is "
<< nWidth << "x" << nHeight << std::endl;
throw std::invalid_argument(err.str());
}
}
template <class COLOR32>
void Nv12ToColor32(uint8_t *dpNv12, int nNv12Pitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 0);
template <class COLOR64>
void Nv12ToColor64(uint8_t *dpNv12, int nNv12Pitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 0);
template <class COLOR32>
void P016ToColor32(uint8_t *dpP016, int nP016Pitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 4);
template <class COLOR64>
void P016ToColor64(uint8_t *dpP016, int nP016Pitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 4);
template <class COLOR32>
void YUV444ToColor32(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 0);
template <class COLOR64>
void YUV444ToColor64(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight, int iMatrix = 0);
template <class COLOR32>
void YUV444P16ToColor32(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight,
int iMatrix = 4);
template <class COLOR64>
void YUV444P16ToColor64(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgra,
int nBgraPitch, int nWidth, int nHeight,
int iMatrix = 4);
template <class COLOR32>
void Nv12ToColorPlanar(uint8_t *dpNv12, int nNv12Pitch, uint8_t *dpBgrp,
int nBgrpPitch, int nWidth, int nHeight,
int iMatrix = 0);
template <class COLOR32>
void P016ToColorPlanar(uint8_t *dpP016, int nP016Pitch, uint8_t *dpBgrp,
int nBgrpPitch, int nWidth, int nHeight,
int iMatrix = 4);
template <class COLOR32>
void YUV444ToColorPlanar(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgrp,
int nBgrpPitch, int nWidth, int nHeight,
int iMatrix = 0);
template <class COLOR32>
void YUV444P16ToColorPlanar(uint8_t *dpYUV444, int nPitch, uint8_t *dpBgrp,
int nBgrpPitch, int nWidth, int nHeight,
int iMatrix = 4);
void Bgra64ToP016(uint8_t *dpBgra, int nBgraPitch, uint8_t *dpP016,
int nP016Pitch, int nWidth, int nHeight, int iMatrix = 4);
void ConvertUInt8ToUInt16(uint8_t *dpUInt8, uint16_t *dpUInt16, int nSrcPitch,
int nDestPitch, int nWidth, int nHeight);
void ConvertUInt16ToUInt8(uint16_t *dpUInt16, uint8_t *dpUInt8, int nSrcPitch,
int nDestPitch, int nWidth, int nHeight);
void ResizeNv12(unsigned char *dpDstNv12, int nDstPitch, int nDstWidth,
int nDstHeight, unsigned char *dpSrcNv12, int nSrcPitch,
int nSrcWidth, int nSrcHeight,
unsigned char *dpDstNv12UV = nullptr);
void ResizeP016(unsigned char *dpDstP016, int nDstPitch, int nDstWidth,
int nDstHeight, unsigned char *dpSrcP016, int nSrcPitch,
int nSrcWidth, int nSrcHeight,
unsigned char *dpDstP016UV = nullptr);
void ScaleYUV420(unsigned char *dpDstY, unsigned char *dpDstU,
unsigned char *dpDstV, int nDstPitch, int nDstChromaPitch,
int nDstWidth, int nDstHeight, unsigned char *dpSrcY,
unsigned char *dpSrcU, unsigned char *dpSrcV, int nSrcPitch,
int nSrcChromaPitch, int nSrcWidth, int nSrcHeight,
bool bSemiplanar);
#ifdef __cuda_cuda_h__
void ComputeCRC(uint8_t *pBuffer, uint32_t *crcValue,
CUstream_st *outputCUStream);
#endif