mirror of
https://github.com/kunkundi/crossdesk.git
synced 2025-10-27 04:35:34 +08:00
[fix] obu data corrupted after transmission
This commit is contained in:
@@ -14,52 +14,6 @@ constexpr int kObuTypeTemporalDelimiter = 2;
|
||||
constexpr int kObuTypeTileList = 8;
|
||||
constexpr int kObuTypePadding = 15;
|
||||
|
||||
int Leb128Size(uint64_t value) {
|
||||
int size = 0;
|
||||
while (value >= 0x80) {
|
||||
++size;
|
||||
value >>= 7;
|
||||
}
|
||||
return size + 1;
|
||||
}
|
||||
|
||||
uint64_t ReadLeb128(const uint8_t*& read_at, const uint8_t* end) {
|
||||
uint64_t value = 0;
|
||||
int fill_bits = 0;
|
||||
while (read_at != end && fill_bits < 64 - 7) {
|
||||
uint8_t leb128_byte = *read_at;
|
||||
value |= uint64_t{leb128_byte & 0x7Fu} << fill_bits;
|
||||
++read_at;
|
||||
fill_bits += 7;
|
||||
if ((leb128_byte & 0x80) == 0) {
|
||||
return value;
|
||||
}
|
||||
}
|
||||
// Read 9 bytes and didn't find the terminator byte. Check if 10th byte
|
||||
// is that terminator, however to fit result into uint64_t it may carry only
|
||||
// single bit.
|
||||
if (read_at != end && *read_at <= 1) {
|
||||
value |= uint64_t{*read_at} << fill_bits;
|
||||
++read_at;
|
||||
return value;
|
||||
}
|
||||
// Failed to find terminator leb128 byte.
|
||||
read_at = nullptr;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int WriteLeb128(uint64_t value, uint8_t* buffer) {
|
||||
int size = 0;
|
||||
while (value >= 0x80) {
|
||||
buffer[size] = 0x80 | (value & 0x7F);
|
||||
++size;
|
||||
value >>= 7;
|
||||
}
|
||||
buffer[size] = value;
|
||||
++size;
|
||||
return size;
|
||||
}
|
||||
|
||||
const char* ObuTypeToString(OBU_TYPE type) {
|
||||
switch (type) {
|
||||
case OBU_SEQUENCE_HEADER:
|
||||
@@ -92,25 +46,13 @@ bool ObuHasSize(uint8_t obu_header) { return obu_header & kObuSizePresentBit; }
|
||||
|
||||
int ObuType(uint8_t obu_header) { return (obu_header & 0b0'1111'000) >> 3; }
|
||||
|
||||
int MaxFragmentSize(int remaining_bytes) {
|
||||
if (remaining_bytes <= 1) {
|
||||
return 0;
|
||||
}
|
||||
for (int i = 1;; ++i) {
|
||||
if (remaining_bytes < (1 << 7 * i) + i) {
|
||||
return remaining_bytes - i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ParseObus
|
||||
|
||||
std::vector<Obu> ParseObus(uint8_t* payload, int payload_size) {
|
||||
std::vector<Obu> result;
|
||||
ByteBufferReader payload_reader(reinterpret_cast<const char*>(payload),
|
||||
payload_size);
|
||||
while (payload_reader.Length() > 0) {
|
||||
Obu obu;
|
||||
bool has_ext_header = false;
|
||||
payload_reader.ReadUInt8(&obu.header);
|
||||
obu.size = 1;
|
||||
if (ObuHasExtension(obu.header)) {
|
||||
@@ -123,16 +65,17 @@ std::vector<Obu> ParseObus(uint8_t* payload, int payload_size) {
|
||||
}
|
||||
payload_reader.ReadUInt8(&obu.extension_header);
|
||||
++obu.size;
|
||||
has_ext_header = true;
|
||||
}
|
||||
if (!ObuHasSize(obu.header)) {
|
||||
obu.payload = std::vector<uint8_t>(
|
||||
reinterpret_cast<const uint8_t*>(payload_reader.Data()),
|
||||
payload_reader.Length());
|
||||
reinterpret_cast<const uint8_t*>(payload_reader.Data()) +
|
||||
payload_reader.Length());
|
||||
payload_reader.Consume(payload_reader.Length());
|
||||
} else {
|
||||
uint64_t size = 0;
|
||||
size_t len = 0;
|
||||
if (!payload_reader.ReadUVarint(&size, &len) ||
|
||||
if (!payload_reader.ReadUVarint(&size) ||
|
||||
size > payload_reader.Length()) {
|
||||
LOG_ERROR(
|
||||
"Malformed AV1 input: declared payload_size {} is larger than "
|
||||
@@ -140,319 +83,38 @@ std::vector<Obu> ParseObus(uint8_t* payload, int payload_size) {
|
||||
size, payload_reader.Length());
|
||||
return {};
|
||||
}
|
||||
|
||||
obu.payload = std::vector<uint8_t>(
|
||||
reinterpret_cast<const uint8_t*>(payload_reader.Data()), size);
|
||||
reinterpret_cast<const uint8_t*>(payload_reader.Data()),
|
||||
reinterpret_cast<const uint8_t*>(payload_reader.Data()) + size);
|
||||
payload_reader.Consume(size);
|
||||
LOG_ERROR("Has size = {}", size);
|
||||
}
|
||||
obu.size += obu.payload.size();
|
||||
// Skip obus that shouldn't be transfered over rtp.
|
||||
int obu_type = ObuType(obu.header);
|
||||
// if (obu_type != kObuTypeTemporalDelimiter && obu_type != kObuTypeTileList
|
||||
// &&
|
||||
if (has_ext_header) {
|
||||
obu.payload.insert(obu.payload.begin(), obu.extension_header);
|
||||
}
|
||||
obu.payload.insert(obu.payload.begin(), obu.header);
|
||||
if (obu_type != kObuTypeTileList && //
|
||||
obu_type != kObuTypePadding) {
|
||||
result.push_back(obu);
|
||||
}
|
||||
// if (obu_type != kObuTypeTemporalDelimiter && //
|
||||
// obu_type != kObuTypeTileList && //
|
||||
// obu_type != kObuTypePadding) {
|
||||
// result.push_back(obu);
|
||||
// }
|
||||
if (obu_type != kObuTypeTileList && obu_type != kObuTypePadding) {
|
||||
result.push_back(obu);
|
||||
}
|
||||
}
|
||||
|
||||
// for (int i = 0; i < result.size(); i++) {
|
||||
// LOG_ERROR("[{}] Obu size = [{}], Obu type [{}]", i,
|
||||
// result[i].payload_size_,
|
||||
// ObuTypeToString((OBU_TYPE)ObuType(result[i].header_)));
|
||||
// }
|
||||
for (int i = 0; i < result.size(); i++) {
|
||||
LOG_ERROR("[{}] Obu size = [{}], Obu type [{}|{}]", i, result[i].size,
|
||||
ObuType(result[i].payload[0]),
|
||||
ObuTypeToString((OBU_TYPE)ObuType(result[i].header)));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
int AdditionalBytesForPreviousObuElement(const Packet& packet) {
|
||||
if (packet.packet_size == 0) {
|
||||
// Packet is still empty => no last OBU element, no need to reserve space
|
||||
// for it.
|
||||
return 0;
|
||||
}
|
||||
if (packet.num_obu_elements > kMaxNumObusToOmitSize) {
|
||||
// There is so many obu elements in the packet, all of them must be
|
||||
// prepended with the length field. That imply space for the length of the
|
||||
// last obu element is already reserved.
|
||||
return 0;
|
||||
}
|
||||
// No space was reserved for length field of the last OBU element, but that
|
||||
// element becoming non-last, so it now requires explicit length field.
|
||||
// Calculate how many bytes are needed to store the length in leb128 format.
|
||||
return Leb128Size(packet.last_obu_size);
|
||||
}
|
||||
|
||||
std::vector<Packet> Packetize(std::vector<Obu> obus) {
|
||||
int max_payload_len = 1200;
|
||||
std::vector<Packet> packets;
|
||||
if (obus.empty()) {
|
||||
return packets;
|
||||
}
|
||||
|
||||
// Aggregation header is present in all packets.
|
||||
max_payload_len -= kAggregationHeaderSize;
|
||||
|
||||
// Assemble packets. Push to current packet as much as it can hold before
|
||||
// considering next one. That would normally cause uneven distribution across
|
||||
// packets, specifically last one would be generally smaller.
|
||||
packets.emplace_back(/*first_obu_index=*/0);
|
||||
int packet_remaining_bytes = max_payload_len;
|
||||
for (size_t obu_index = 0; obu_index < obus.size(); ++obu_index) {
|
||||
const bool is_last_obu = obu_index == obus.size() - 1;
|
||||
const Obu& obu = obus[obu_index];
|
||||
|
||||
// Putting `obu` into the last packet would make last obu element stored in
|
||||
// that packet not last. All not last OBU elements must be prepend with the
|
||||
// element length. AdditionalBytesForPreviousObuElement calculates how many
|
||||
// bytes are needed to store that length.
|
||||
int previous_obu_extra_size =
|
||||
AdditionalBytesForPreviousObuElement(packets.back());
|
||||
int min_required_size =
|
||||
packets.back().num_obu_elements >= kMaxNumObusToOmitSize ? 2 : 1;
|
||||
if (packet_remaining_bytes < previous_obu_extra_size + min_required_size) {
|
||||
// Start a new packet.
|
||||
packets.emplace_back(/*first_obu_index=*/obu_index);
|
||||
packet_remaining_bytes = max_payload_len;
|
||||
previous_obu_extra_size = 0;
|
||||
}
|
||||
Packet& packet = packets.back();
|
||||
// Start inserting current obu into the packet.
|
||||
packet.packet_size += previous_obu_extra_size;
|
||||
packet_remaining_bytes -= previous_obu_extra_size;
|
||||
packet.num_obu_elements++;
|
||||
|
||||
bool must_write_obu_element_size =
|
||||
packet.num_obu_elements > kMaxNumObusToOmitSize;
|
||||
// Can fit all of the obu into the packet?
|
||||
int required_bytes = obu.size;
|
||||
if (must_write_obu_element_size) {
|
||||
required_bytes += Leb128Size(obu.size);
|
||||
}
|
||||
int available_bytes = packet_remaining_bytes;
|
||||
// if (is_last_obu) {
|
||||
// // If this packet would be the last packet, available size is smaller.
|
||||
// if (packets.size() == 1) {
|
||||
// available_bytes += limits.first_packet_reduction_len;
|
||||
// available_bytes -= limits.single_packet_reduction_len;
|
||||
// } else {
|
||||
// available_bytes -= limits.last_packet_reduction_len;
|
||||
// }
|
||||
// }
|
||||
if (required_bytes <= available_bytes) {
|
||||
// Insert the obu into the packet unfragmented.
|
||||
packet.last_obu_size = obu.size;
|
||||
packet.packet_size += required_bytes;
|
||||
packet_remaining_bytes -= required_bytes;
|
||||
continue;
|
||||
}
|
||||
|
||||
// required_bytes larger than available_bytes, fragment the obu.
|
||||
int max_first_fragment_size = must_write_obu_element_size
|
||||
? MaxFragmentSize(packet_remaining_bytes)
|
||||
: packet_remaining_bytes;
|
||||
// Because available_bytes might be different than
|
||||
// packet_remaining_bytes it might happen that max_first_fragment_size >=
|
||||
// obu.size. Also, since checks above verified `obu` should not be put
|
||||
// completely into the `packet`, leave at least 1 byte for later packet.
|
||||
int first_fragment_size = std::min(obu.size - 1, max_first_fragment_size);
|
||||
if (first_fragment_size == 0) {
|
||||
// Rather than writing 0-size element at the tail of the packet,
|
||||
// 'uninsert' the `obu` from the `packet`.
|
||||
packet.num_obu_elements--;
|
||||
packet.packet_size -= previous_obu_extra_size;
|
||||
} else {
|
||||
packet.packet_size += first_fragment_size;
|
||||
if (must_write_obu_element_size) {
|
||||
packet.packet_size += Leb128Size(first_fragment_size);
|
||||
}
|
||||
packet.last_obu_size = first_fragment_size;
|
||||
}
|
||||
|
||||
// Add middle fragments that occupy all of the packet.
|
||||
// These are easy because
|
||||
// - one obu per packet imply no need to store the size of the obu.
|
||||
// - this packets are nor the first nor the last packets of the frame, so
|
||||
// packet capacity is always limits.max_payload_len.
|
||||
int obu_offset;
|
||||
for (obu_offset = first_fragment_size;
|
||||
obu_offset + max_payload_len < obu.size;
|
||||
obu_offset += max_payload_len) {
|
||||
packets.emplace_back(/*first_obu_index=*/obu_index);
|
||||
Packet& packet = packets.back();
|
||||
packet.num_obu_elements = 1;
|
||||
packet.first_obu_offset = obu_offset;
|
||||
int middle_fragment_size = max_payload_len;
|
||||
packet.last_obu_size = middle_fragment_size;
|
||||
packet.packet_size = middle_fragment_size;
|
||||
}
|
||||
|
||||
// Add the last fragment of the obu.
|
||||
int last_fragment_size = obu.size - obu_offset;
|
||||
// Check for corner case where last fragment of the last obu is too large
|
||||
// to fit into last packet, but may fully fit into semi-last packet.
|
||||
if (is_last_obu &&
|
||||
last_fragment_size >
|
||||
limits.max_payload_len - limits.last_packet_reduction_len) {
|
||||
// Split last fragments into two.
|
||||
if (last_fragment_size < 2) {
|
||||
LOG_FATAL("last_fragment_size small than 2");
|
||||
return {};
|
||||
}
|
||||
// Try to even packet sizes rather than payload sizes across the last
|
||||
// two packets.
|
||||
int semi_last_fragment_size = last_fragment_size / 2;
|
||||
// But leave at least one payload byte for the last packet to avoid
|
||||
// weird scenarios where size of the fragment is zero and rtp payload has
|
||||
// nothing except for an aggregation header.
|
||||
if (semi_last_fragment_size >= last_fragment_size) {
|
||||
semi_last_fragment_size = last_fragment_size - 1;
|
||||
}
|
||||
last_fragment_size -= semi_last_fragment_size;
|
||||
|
||||
packets.emplace_back(/*first_obu_index=*/obu_index);
|
||||
Packet& packet = packets.back();
|
||||
packet.num_obu_elements = 1;
|
||||
packet.first_obu_offset = obu_offset;
|
||||
packet.last_obu_size = semi_last_fragment_size;
|
||||
packet.packet_size = semi_last_fragment_size;
|
||||
obu_offset += semi_last_fragment_size;
|
||||
}
|
||||
packets.emplace_back(/*first_obu_index=*/obu_index);
|
||||
Packet& last_packet = packets.back();
|
||||
last_packet.num_obu_elements = 1;
|
||||
last_packet.first_obu_offset = obu_offset;
|
||||
last_packet.last_obu_size = last_fragment_size;
|
||||
last_packet.packet_size = last_fragment_size;
|
||||
packet_remaining_bytes = max_payload_len - last_fragment_size;
|
||||
}
|
||||
return packets;
|
||||
}
|
||||
|
||||
uint8_t AggregationHeader() const {
|
||||
const Packet& packet = packets_[packet_index_];
|
||||
uint8_t aggregation_header = 0;
|
||||
|
||||
// Set Z flag: first obu element is continuation of the previous OBU.
|
||||
bool first_obu_element_is_fragment = packet.first_obu_offset > 0;
|
||||
if (first_obu_element_is_fragment) aggregation_header |= (1 << 7);
|
||||
|
||||
// Set Y flag: last obu element will be continuated in the next packet.
|
||||
int last_obu_offset =
|
||||
packet.num_obu_elements == 1 ? packet.first_obu_offset : 0;
|
||||
bool last_obu_is_fragment =
|
||||
last_obu_offset + packet.last_obu_size <
|
||||
obus_[packet.first_obu + packet.num_obu_elements - 1].size;
|
||||
if (last_obu_is_fragment) aggregation_header |= (1 << 6);
|
||||
|
||||
// Set W field: number of obu elements in the packet (when not too large).
|
||||
if (packet.num_obu_elements <= kMaxNumObusToOmitSize)
|
||||
aggregation_header |= packet.num_obu_elements << 4;
|
||||
|
||||
// Set N flag: beginning of a new coded video sequence.
|
||||
// Encoder may produce key frame without a sequence header, thus double check
|
||||
// incoming frame includes the sequence header. Since Temporal delimiter is
|
||||
// already filtered out, sequence header should be the first obu when present.
|
||||
if (frame_type_ == VideoFrameType::kVideoFrameKey && packet_index_ == 0 &&
|
||||
ObuType(obus_.front().header) == kObuTypeSequenceHeader) {
|
||||
aggregation_header |= (1 << 3);
|
||||
}
|
||||
return aggregation_header;
|
||||
}
|
||||
|
||||
bool NextPacket(RtpPacket* packet) {
|
||||
if (packet_index_ >= packets_.size()) {
|
||||
return false;
|
||||
}
|
||||
const Packet& next_packet = packets_[packet_index_];
|
||||
|
||||
if (next_packet.num_obu_elements < 0) {
|
||||
LOG_FATAL("NextPacket: num_obu_elements < 0");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (next_packet.first_obu_offset >= obus_[next_packet.first_obu].size) {
|
||||
LOG_FATAL(
|
||||
"next_packet.first_obu_offset >= obus_[next_packet.first_obu].size");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (next_packet.last_obu_size >
|
||||
obus_[next_packet.first_obu + next_packet.num_obu_elements - 1].size) {
|
||||
LOG_FATAL(
|
||||
"next_packet.last_obu_size>obus_[next_packet.first_obu+"
|
||||
"next_packet.num_obu_elements-1].size");
|
||||
return false;
|
||||
}
|
||||
|
||||
uint8_t* const rtp_payload =
|
||||
packet->AllocatePayload(kAggregationHeaderSize + next_packet.packet_size);
|
||||
uint8_t* write_at = rtp_payload;
|
||||
|
||||
*write_at++ = AggregationHeader();
|
||||
|
||||
int obu_offset = next_packet.first_obu_offset;
|
||||
// Store all OBU elements except the last one.
|
||||
for (int i = 0; i < next_packet.num_obu_elements - 1; ++i) {
|
||||
const Obu& obu = obus_[next_packet.first_obu + i];
|
||||
size_t fragment_size = obu.size - obu_offset;
|
||||
write_at += WriteLeb128(fragment_size, write_at);
|
||||
if (obu_offset == 0) {
|
||||
*write_at++ = obu.header & ~kObuSizePresentBit;
|
||||
}
|
||||
if (obu_offset <= 1 && ObuHasExtension(obu.header)) {
|
||||
*write_at++ = obu.extension_header;
|
||||
}
|
||||
int payload_offset =
|
||||
std::max(0, obu_offset - (ObuHasExtension(obu.header) ? 2 : 1));
|
||||
size_t payload_size = obu.payload.size() - payload_offset;
|
||||
if (!obu.payload.empty() && payload_size > 0) {
|
||||
memcpy(write_at, obu.payload.data() + payload_offset, payload_size);
|
||||
}
|
||||
write_at += payload_size;
|
||||
// All obus are stored from the beginning, except, may be, the first one.
|
||||
obu_offset = 0;
|
||||
}
|
||||
// Store the last OBU element.
|
||||
const Obu& last_obu =
|
||||
obus_[next_packet.first_obu + next_packet.num_obu_elements - 1];
|
||||
int fragment_size = next_packet.last_obu_size;
|
||||
RTC_DCHECK_GT(fragment_size, 0);
|
||||
if (next_packet.num_obu_elements > kMaxNumObusToOmitSize) {
|
||||
write_at += WriteLeb128(fragment_size, write_at);
|
||||
}
|
||||
if (obu_offset == 0 && fragment_size > 0) {
|
||||
*write_at++ = last_obu.header & ~kObuSizePresentBit;
|
||||
--fragment_size;
|
||||
}
|
||||
if (obu_offset <= 1 && ObuHasExtension(last_obu.header) &&
|
||||
fragment_size > 0) {
|
||||
*write_at++ = last_obu.extension_header;
|
||||
--fragment_size;
|
||||
}
|
||||
if (write_at - rtp_payload + fragment_size !=
|
||||
kAggregationHeaderSize + next_packet.packet_size) {
|
||||
LOG_FATAL("write_at - rtp_payload + fragment_size!=
|
||||
kAggregationHeaderSize + next_packet.packet_size");
|
||||
return false;
|
||||
}
|
||||
int payload_offset =
|
||||
std::max(0, obu_offset - (ObuHasExtension(last_obu.header) ? 2 : 1));
|
||||
memcpy(write_at, last_obu.payload.data() + payload_offset, fragment_size);
|
||||
write_at += fragment_size;
|
||||
|
||||
if (write_at - rtp_payload !=
|
||||
kAggregationHeaderSize + next_packet.packet_size) {
|
||||
LOG_FATAL("write_at - rtp_payload!=
|
||||
kAggregationHeaderSize + next_packet.packet_size");
|
||||
return false;
|
||||
}
|
||||
|
||||
++packet_index_;
|
||||
bool is_last_packet_in_frame = packet_index_ == packets_.size();
|
||||
packet->SetMarker(is_last_packet_in_frame && is_last_frame_in_picture_);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace obu
|
||||
Reference in New Issue
Block a user